欢迎访问莱特莱德哈尔滨水处理设备公司!
领先流体过滤与分离技术解决方案服务商

Leading fluid filtration and separation technology solutions provider

您的位置:首页 > 技术资料

公司介绍 工程业绩 技术资料 联系我们

除盐技术在反渗透系统中是怎么样应用和改进的?哈尔滨电子行纯水设备,哈尔滨医疗水处理设备,

2010-05-24 08:46:27
除盐技术在反渗透系统中是怎么样应用和改进的?哈尔滨反渗透水处理设备,哈尔滨电子行纯水设备,哈尔滨医疗水处理设备,哈尔滨除铁锰水处理设备,哈尔滨EDI超纯水设备

 

除盐技术在反渗透系统中是怎么样应用和改进的
文件类型: .doc 5d7853c158a2faf1addb90e699aea525.doc (251.00 KB)

    反渗透除盐水处理工艺采用无相变的物理方法,它在诸多方面具有传统的水处理方法所没有的特点:其系统简单,操作方便,运行费用低,不耗酸、碱,相应的腐蚀和环境污染问题也少;产品水水质稳定,无忽高忽低的波动,对二级混床的正常运行极为有利(反渗透系统,反渗透技术,反渗透)。
 
一:砂滤器滤料改进去除铁离子哈尔滨反渗透水处理设备,哈尔滨电子行纯水设备,哈尔滨医疗水处理设备,
    从近二年来的分析数据来看,由于原水中铁离子的含量受长江汛期及水厂加药平稳率的影响,忽高忽低,含铁量最高可达0.60ppm。而膜供应商对卷式复合膜的进水水质要求:含铁量最大值为0.10ppm。故本次改造中,在原砂滤器中补加了400mm高度,粒径为0.5-0.6mm的优质天然锰砂。
    天然水中的铁离子有二价铁和三价铁两种形态,由于Fe2+具有较强的还原性,极易被氧化为Fe3+,Fe3+在水中发生水解反应,生成难溶化合物Fe(OH)3胶体,堵塞膜元件的水通道。天然锰砂的主要成分是二氧化锰,它是二价铁氧化成三价铁良好的催化剂。只要水中PH值大于5.5时,与锰砂接触即可将Fe2+氧化成Fe3+,反应如下:
4MnO2 + 3O2 = 2Mn2O7
Mn2O7+ 6 Fe2+ + 3H2O = 2MnO2+ 6 Fe3+ +OH-
    生成的Fe3+立即水解生成絮状氢氧化铁沉淀,Fe(OH)3沉淀物经锰砂过滤后被除去,因此,锰砂滤层起着催化和过滤的双重作用。从改造完成后的运行分析数据来看,砂滤器出口铁含量可以控制在<0.04ppm以下,满足了RO膜元件的进水要求(反渗透系统,反渗透技术,反渗透)。
 
二:超滤器运行方式的改进
    反渗透设备进水的预处理包括两个方面:一是防止悬浮物、胶体和微生物对膜和管道内部的污染与堵塞,另一方面是要防止难溶盐的沉淀结垢。本次改造,仍按原设计选用山东招远膜工程设备厂生产的UF-IB9型内压式中空纤维超滤膜。
    超滤属于压力驱动型膜分离技术。在压差为驱动力的作用下,溶液中的溶剂(水)和小溶质粒子从高压的料液侧透过膜到低压侧,一般称为滤出液,而大粒径组分被膜所阻拦,从而在滤剩液中浓度增大。超滤膜分离过程中,随着流速到达膜表面的溶质,由于受到膜的截留而积累,使得膜表面溶质浓度逐步高于料液主体浓度。超滤过程中主要障碍是浓差极化和膜污染,通常情况下超滤渗透量的大小随着温度和进料速度的升高而增加,但随着进料浓度的增加而下降。众所周知,浓差极化是超滤过程中不可避免的结果,为了控制浓差极化减轻污染,增加超滤通量。本次改造过程中,保留了原设计中的二台低压循环泵,同时将原水管网直接与原水泵吸入口连接,提高原水泵的输出扬程,用以提高超滤器的进水流速,增大膜面水流速。用于消除一部分浓差极化层,使被截面的溶质及时被水流带走,进一步降低浓差极化层的厚度,提高超滤器的渗透通量。
    另外,本次改造对UF组件的运行方式也加以改进,在原反冲洗的基础上,增加了UF膜面自动快速冲洗工艺,进一步降低了UF膜元件化学清洗频率。
 
三:反渗透除盐系统的改进
1、背压法均衡系统水通量分布    哈尔滨反渗透水处理设备,哈尔滨电子行纯水设备,哈尔滨医疗水处理设备,
    反渗透是一种压力梯度为动力的膜分离过程,是自然渗透的逆过程,给水压力升高使膜的水通量增大,但压力升高并不影响盐透过量。在盐透过量不变的情况下,水通量增大将使产品水中的含盐量下降。
    由于本装置采用UF组件作为反渗透除盐装置的预处理,故UF透过水SDI值较低,可以在较高的水通量下运行。
    在相同的水通量下,系统的纯驱动压力将产生很大梯度,即进水端纯驱动压力很高,而浓水端纯驱动压力降至很低。这主要是由于膜元件的摩擦损失造成浓水的渗透高于浓水压力。因此,前端膜元件将在高水通量和高回收率状态下运行,而末端膜元件产出含盐量较高的少量淡水,在这样的条件下,前端膜元件的浓差极化严重,对产品水的含盐量造成不良影响,还可能加速膜的污堵速度(反渗透系统,反渗透技术,反渗透)。

    原设计RO膜元件按5×3排列时,第一段的膜元件占全部的62.5%,而产水量却占全部的85%,即34.0t/h。本次改造时重新进行系统设计,调整全系统参数,将原5×3排列拆分为二套3×1排列并联方式运行,同时对于多段系统可能产生极端的水通量分析,在一段产品水出口和二段产品水出口之间加装压力表,手动调节阀,以平衡一、二段产品水水量。通过增加产品水背压来调整每段的运行参数,修正多段系统中的这种极端水通量分布。在实际运行过程中,所需增加的段间压力相对较小,只需在第一段产水上加约0.02Mpa的背压,即可改进淡水水通量分布,使其达到规定的75%比25%的产水分布,产品水的水质也得以改善,目前为止RO系统脱盐率为98.6%。
2、调整RO给水PH值,去除游离CO2
    由膜元件的特性决定了水中的溶解气体如CO2透过率几乎为100%,HCO3-的透过率随着PH值的升高而降低。
    从碳酸的电离度与水中PH值的关系中可以看出,水中的重碳酸盐是不稳定的,它可以HCO3-、CO32-以及CO2+H2CO3三种形式存在。当PH约为8.3时溶液中几乎只含有HCO3-。针对上述情况,本次改造在RO膜保安过滤器前,除添加NaHSO3还原剂和AF200ul阻垢剂外,同时添加NaOH调整反渗透给水PH值至8.2-8.3间,使反渗透能去除游离CO2最大程度地提高反渗透的脱盐率,最终提高混床的定收量。同时取消原设计中的RO产品水水箱,RO产品水直接进一级除盐水箱,并在中间顶部加装复式液碱呼吸器,以防止大气中的CO2等气体对RO产品水的二次污染,减轻混床离子交换的负担(反渗透系统,反渗透技术,反渗透)。
3、 增加RO停车纯水冲洗工艺
    利用正渗透作用也是一种冲洗方法。当RO系统停车时,引入混床出口的纯水来置换、冲洗膜面,由于混床出口的纯水含盐量远低于RO产品水,故能使RO产品水侧的产品水在停车后开始透过膜向低浓度纯水侧移动,由于水的移动而使侵入膜内细孔吸附在膜表面的污染物变成容易去除的状态,在流动状态下可以减少膜面的浓差极化现象,减少膜面的污染。
4、 选用抗污染膜
    虽然,给水进行预处理的目的是为了减少RO膜面的污染,但由于给水预处理工况紊乱、给水成分改变等原因,特别是用地表水做原水,水中的细菌及微生物,仍然会导致RO膜面产生污堵现象,从而引起系统产水量下降,压差增加引起能耗增加,缩短膜元件的使用寿命。哈尔滨反渗透水处理设备,哈尔滨电子行纯水设备,哈尔滨医疗水处理设备,
结合本次改造我们选用了美国DOW公司FILMTEC BW30-365FR抗污染膜,该元件采用了FILMTEC“增加膜片数,缩短膜片长”的独特结构及膜表面光洁度比普通膜元件提高40%的特点。据相关资料介绍,该膜元件具有:①最优的给水通道设计:给水通道中水呈高度穿紊流状态,减少浓差极化,减少污染物在膜面上的沉积;②宽的给水通道,提高了膜的可清晰性;③膜片有很强的稳定性,是一种本身具备强抗污染性能的膜元件(反渗透系统,反渗透技术,反渗透)。


 反渗透纯水设备.反渗透系统,反渗透技术,反渗透
 

 

经典工程案例